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Abstract

We describe the implementation of a prototype fully implicit method for solv-

ing three-dimensional quasi-steady state magnetic advection-diffusion problems.

This method allows us to solve the magnetic advection diffusion equations in an

Eulerian frame with a fixed, user-prescribed velocity field. We have verified the

correctness of method and implementation on two standard verification problems,

the Solberg-White magnetic shear problem and the Perry-Jones-White rotating

cylinder problem.
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Nomenclature

σ(x) user specified spatial conductive function
v(x) user specified spatial velocity function satisfying ∇ · v = 0
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1 Introduction

This report documents the implementation and testing of a fully implicit method for
solving the three dimensional quasi-steady state magnetic advection-diffusion equations.
These equations remain from the full magnetohydrodynamics model when the velocity
field is assumed to be known. This approach avoids the limitations associated with
explicitly capturing acoustic waves and can proceed integrate in time to steady state
using very large timesteps. In order to assure highly accurate solutions, we have employed
curl-compatible discretizations, also known as edge elements [2, 3]. Our existing scalable
linear solver technology [1] has been employed to solve the resulting discrete system. This
approach provides for highly efficient ”mid-level” modeling when the kinematics of the
flow field can be assumed.

In the end we are interested in solving the advection diffusion equation in regimes in
which the magnetic Reynold’s number,

RM = µσ|v|L, (1.1)

varies by orders of magnitude from very small to very large values. The number provides
a measure of the relative strength of the advective versus diffusive terms in this moving
conducting media model. At very small values the solution will be dominated by diffusion
while for very large magnetic values, RM � 1, the convective effects on the magnetic
field due to material motion will be balanced where required by very small length scale
diffusion layers. We expect in this case that the equations will need to be stabilized when
the resolution of the simulation is not such that that small diffusion layers are adequately
resolved. Such stabilization is not discussed in this report.

We have verified the correctness of our method on two standard verification problems,
the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder
problem. For both of these problems, we compare our quasi-steady state method with
the appropriate analytic solution. For the Solberg-White problem, where we have an
orthogonal mesh and a smoothly varying velocity field, we demonstrate that our quasi-
steady method converges at second order accuracy with respect to spatial refinement. For
the Perry-Jones-White problem, which has a discontinuous velocity field and somewhat
distorted elements, we demonstrate first order convergence in space.

2 Theory

The basic approximate model equation that we consider is Faraday’s induction equation
in moving media. In integral form this is

d

dt

∫

Γt

B · n dΓ +

∮

∂Γt

E · dx = 0, (2.2)
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where ∂Γt is the boundary of the material surface Γt, B is the magnetic induction or
magnetic flux density and E is the electromotive intensity or the electric field in the
material frame. In local form this is

∂B

∂t
−∇× (v × B) + (∇ · B)v + ∇× E = 0, (2.3)

where v is the velocity field. The magnetic induction is divergence free, namely,

∇ · B = 0. (2.4)

Ampere’s Law neglecting displacement currents

∇× H = J, (2.5)

relates the magnetic field H and the current density J. We also have Ohm’s Law

J = σE , (2.6)

relating the current density to the electromotive intensity and

H =
B

µ
, (2.7)

relating the magnetic field and the flux density. We can chose to include an arbitrary
scalar potential φ in the formulation. In this case we need one additional equation or
“gauge” to close the system. A useful choice is

∇ · σ∇φ = 0. (2.8)

This clearly separates steady state potential electric field solution contributions from the
transient solution. We can relate the electromotive intensity to the electric field in the
lab frame, E, by

E = E + v × B −∇φ. (2.9)

Combining these equations results in

∇×
B

µ
= σ E , (2.10)

∂B

∂t
+ ∇× E = 0, (2.11)

E = E + v × B −∇φ. (2.12)

We weakly impose Ampere’s law and directly discretize Faraday’s law. Our finite element
representation is

∫

Ω

B

µ
· ∇ × Ê dΩ +

∫

Γ

(n × Hb) · Ê dΓ =

∫

Ω

σE · Ê dΩ, (2.13)

Bn+1 − Bn

∆t
+ ∇× E = 0, (2.14)

∫

Ω

∇φ̂ · σ∇φdΩ =

∫

Γ

φ̂σ∇φ · n dΓ. (2.15)
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Substituting (2.12) and (2.14) into (2.13) yields

∫

Ω

µ−1 (Bn − ∆t∇× E) · ∇ × Ê dΩ +

∫

Γ

(n × Hb) · Ê dΓ =
∫

Ω

σ (E + v × (Bn − ∆t∇× E) −∇φ) · Ê dΩ, (2.16)

or,

∫

Ω

σE · Ê +
∆t

µ
(∇× E) · (∇× Ê) − σ∆t v × (∇× E) · Ê dΩ =

∫

Ω

1

µ
Bn · ∇ × Ê − σ(v × Bn) · Ê + σ∇φ · Ê dΩ +

∫

Γ

(n × Hb) · Ê dΓ. (2.17)

which gives a finite element equation for the time variation of the electric field. The
magnetic flux density can then be computed directly after the fact from Faraday’s law.
There are three different types of boundaries and associated boundary conditions of
interest associated with the above formulation:

• Type D: Dirichlet condition on φ and a Dirichlet condition for n × E.

• Type N: A Neumann condition associated with φ, e.g. σ∇φ·n = 0, and a Neumann
condition associated with H, e.g. n × H = 0.

• Type P: A Neumann condition for φ, e.g. σ∇φ · n = 0 and a Dirichlet condition
for n × E.

Nodal elements are an appropriate basis for φ and edge elements are an appropriate
basis for E to provide tangential continuity. We have included the scalar potential for
completeness in the description of the formulation. We will describe results in the next
section verifying the formulation for the case with no additional scalar potential.

3 Verification Experiments

We consider two verification problems for our quasi-steady method, and compare those
solutions to both the analytic solution as well as a comparable problem solved using
ALEGRA-MHD. For magnetic field variables, both the quasi-steady state method and
ALEGRA-MHD should be second-order accurate in space for problems with smooth
velocity fields and orthogonal meshes. For problems with discontinuous velocities or dis-
torted elements, we expect at best first-order accuracy in space. For all of the subsequent
discussion, the h value of the coarsest mesh shown is assigned the value of 1. All finer
meshes are assigned values of h with repect to their refinement from the coarsest mesh.

11



3.1 Solberg-White MHD Shear Problem

We first consider an version of the steady-state Solberg-White problem [5]. The compu-
tational domain is a [0, 1] interval in the x-direction and periodic in y and z. We then
apply an initial uniform magnetic field in the x-direction and an imposed shear velocity
in the y-direction. This motion shears the B field and induces a y-directional component.
We use a hyperbolic tangent velocity profile of the form,

vy(x) =
1

2
(1 + tanh(x − 0.5)) . (3.18)

This produces a nearly linear shear velocity profile that varies smoothly between approx-
imately .26 and .73. Material parameters are chosen such that σ = µ = 1. This gives us
the analytic solution,

By =
1

2

(
ln cosh

1

2
− ln cosh [(x − x0)]

)
. (3.19)

We then consider the value of By for order verification. We do so by uniformly refining
the mesh and running both the quasi-steady method (qsm) as well as standard ALEGRA-
MHD (mhd). Figure 1 shows the absolute error in the y-component of the B field with
respect to mesh refinement. We can clearly see second-order accuracy in space in all
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Figure 1: Order verification study indicating second order convergence in the y-
component of the B field in the L1, L2 and L

∞
norms for both ALEGRA-MHD (mhd)

and the Quasi-Steady State Method (qsm) for the MHD shear test problem with a smooth
velocity profile.

three norms for both methods. We also note that both the quasi-steady state method
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and ALEGRA-MHD produce answers of similar quality. The same data is given in table
form in Appendix A.1.

We also consider the solution time for both the quasi-steady state method and
ALEGRA-MHD. In both cases we run in serial on icebox, which has 3.33 GHz Xeon
processors. For ALEGRA-MHD we use the CG solver, while the non-symmetric quasi-
steady method uses GMRES. In both cases we precondition using the eddy current
preconditioner described in [1] using two Chebyshev smoothing sweeps on each level.
The CPU times (in seconds) for this study are shown in Table 1. We note that the
quasi-steady method is significantly faster than ALEGRA-MHD, due to the ability to
take arbitrarily large timesteps in the fully implicit method. In this case 0.1 seconds
of simulation time are covered per timestep. The explicit hydro timestep in ALEGRA-
MHD is about 6.25e-4 for the smallest problem in the set and the timestep only grows
smaller with mesh refinement. Note that this time step could be tuned by adjusting the
thermodynamic sound speed in the MHD modeling so these timing numbers should be
taken to be primarily illustrative in purpose.

Solution Time (s)
h ALEGRA-MHD Quasi-Steady

1.0 416 2
0.5 692 4

0.25 2,807 16
0.125 19,286 124

0.0625 ∗ 1,377

Table 1: Solution time for the Solberg-White MHD shear problem for the Quasi-Steady
State Method (qsm) for the MHD shear test problem with a smooth velocity profile.
Asterisks(∗) indicate runs that were prohibitively expensive to complete.

3.2 Perry-Jones-White Rotating Cylinder Problem

Our second verification problem is based on White’s version of the Perry-Jones rotor
problem [4, 6]. This problem consists of a rotating cylinder in free space with imposed
velocity,

vx(r, θ) = −rΩ sin(θ), (3.20)

vy(r, θ) = rΩ cos(θ), (3.21)

where Ω = 106, (r, θ) are radial coordinates and r is taken to be 6.554e-3. An initial
uniform magnetic field is applied and boundary conditions are imposed matching the
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analytic B field on the boundaries. The cylinder is then allowed to rotate until the B

field reaches steady state. Material parameters are chosen with σ = 4.6575e5 and µ equal
to the permeability of free space. Figure 2 shows the steady state distribution of the x

and y components of the magnetic field in the cylinder and in a surrounding void region.

Figures 3 and 4 show the x and y components of the B field respectively for both the
quasi-steady method and standard ALEGRA-MHD with respect to mesh refinement. We
can see first order (or slightly better) convergence in all three norms for both methods.
We also note that both the quasi-steady state method and ALEGRA-MHD produce
answers of similar quality. It is not clear at this time if the the discontinuity in the
velocity field and/or the distorted element shapes are the root cause of the first order
convergence rates (rather than second order) in this problem. The same data is given in
table form in Appendix A.2.

We again consider the solution time for both the quasi-steady state method and
ALEGRA-MHD. We use the machine, preconditioner and solver as in Section 3.1, ex-
cept that we now use four Chebyshev smoothing sweeps on the fine level and six on
intermediate levels of our AMG method. The CPU times (in seconds) for this study are
shown in Table 2. We note again that the quasi-steady method is significantly faster
than ALEGRA-MHD, due to the ability to take arbitrarily large timesteps in the fully
implicit method. In this case 2e-4 seconds of simulation time are covered per timestep.
The explicit hydro timestep in ALEGRA-MHD is about 3e-8 for the smallest problem in
the set and the timestep only grows smaller with mesh refinement. Again, this time step
could be tuned by adjusting the thermodynamic sound speed in the MHD modeling, so
these timing numbers should be taken to be primarily illustrative in purpose.

Solution Time (s)
h ALEGRA-MHD Quasi-Steady

1.0 6,318 2
0.5 45,154 7

0.25 ∗ 34
0.125 ∗ 226

0.0625 ∗ 7,461

Table 2: Solution time for the Perry-Jones-White rotating cylinder for the Quasi-Steady
State Method (qsm) for the MHD shear test problem with a smooth velocity profile.
Asterisks(∗) indicate runs that were prohibitively expensive to complete.
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Figure 2: x and y components of the steady-state B field for the Perry-Jones-White
rotating cylinder problem.
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Figure 3: Order verification study indicating first order convergence in the x-component
of the B field in the L1, L2 and L

∞
norms for both ALEGRA-MHD (mhd) and the

Quasi-Steady State Method (qsm) for the Perry-Jones-White rotating cylinder problem.

4 Conclusions

We have described our proposed fully implicit formulation for solving 3D quasi-steady
state magnetic advection-diffusion problems in an Eulerian frame with a fixed, user-
prescribed velocity field. The correctness of implementation was verified on two prob-
lems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating
cylinder problem. We have also demonstrated that this quasi-steady state method yield
an accurate solution substantially faster than ALEGRA-MHD for problems to which it
is applicable.
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Figure 4: Order verification study indicating first order convergence in the y-component
of the B field in the L1, L2 and L

∞
norms for both ALEGRA-MHD (mhd) and the

Quasi-Steady State Method (qsm) for the Perry-Jones-White rotating cylinder problem.

17



References

[1] P.B. Bochev, J.J. Hu, C.M. Siefert, and R.S. Tuminaro. An algebraic multigrid
approach based on compativle gauge reformulations of Maxwell’s equations. SIAM

J. Sci. Comput., 31(1):557–583, 2008.

[2] P.B. Bochev and J.M. Hyman. Principles of mimetic discretizations of differen-
tial operators. In D.N. Arnold, P.B. Bochev, R.B. Lehoucq, R.A. Nicolaides, and
M. Shashkov, editors, Compatible Spatial Discretizations. Springer-Verlag, 2006.

[3] A. Bossavit. Whitney forms: A class of finite elements for three dimensional compu-
tations in electromagnetism. IEEE Proceedings, 135(8):493–500, 1988.

[4] M.P. Perry and T.B. Jones. Eddy current induction in a solid conducting cylinder
with a transverse magnetic field. IEEE Transactions on Magnetics, MAG-14(4):227–
232, 1978.

[5] J. Solberg and D. White. Investigation of the convergence of a MHD shear layer
to the jump condition: revised and expanded version 3. Technical report, Lawrence
Livermore National Laboratory, November 2008.

[6] Daniel White. Eddy currents in a rotating cylinder: a code verification problem.
Technical report, Lawrence Livermore National Laboratory (unpublished), July 2008.

18



A Detailed Verification Results

A.1 Solberg-White MHD Shear Problem

Convergence Norm
h L

∞
L1 L2

1.0 1.16907e-03 1.16907e-03 1.16907e-03
0.5 3.16364e-04 2.98813e-04 2.99328e-04

0.25 8.07924e-05 7.50884e-05 7.52596e-05
0.125 2.03086e-05 1.87955e-05 1.88411e-05

Table 3: Order verification study indicating second order convergence in the y-component
of the B field in the L1, L2 and L

∞
norms for ALEGRA-MHD (mhd) for the MHD shear

test problem with a smooth velocity profile. This is the table form of the MHD data
shown in Figure 1.

Convergence Norm
h L

∞
L1 L2

1.0 1.16907e-03 1.16907e-03 1.16907e-03
0.5 3.16364e-04 2.98813e-04 2.99328e-04

0.25 8.07924e-05 7.50884e-05 7.52596e-05
0.125 2.03086e-05 1.87955e-05 1.88411e-05

0.0625 5.08477e-06 4.70067e-06 4.71225e-06

Table 4: Order verification study indicating second order convergence in the y-component
of the B field in the L1, L2 and L

∞
norms for the Quasi-Steady State Method (qsm) for

the MHD shear test problem with a smooth velocity profile. This is the table form of
the QSM data shown in Figure 1.

A.2 Perry-Jones-White Rotating Cylinder Problem
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Convergence Norm
h L

∞
L1 L2

1.0 3.38531e+00 1.30128e-01 3.64433e-01
0.5 1.44313e+00 3.59122e-02 1.28131e-01

0.25 5.76555e-01 1.68215e-02 5.16299e-02
0.125 2.46104e-01 8.82628e-03 2.30312e-02

0.0625 1.12036e-01 4.53553e-03 1.08674e-02

Table 5: Order verification study indicating first order convergence in the x-component
of the B field in the L1, L2 and L

∞
norms for the Quasi-Steady State Method (qsm)

for the Perry-Jones-White rotating cylinder problem. This is the table form of the QSM
data shown in Figure 3.

Convergence Norm
h L

∞
L1 L2

1.0 2.95058e+00 1.16006e-01 2.73357e-01
0.5 1.10440e+00 3.16109e-02 8.96377e-02

0.25 5.25072e-01 1.39884e-02 3.66707e-02
0.125 2.43420e-01 7.37389e-03 1.70423e-02

0.0625 1.15077e-01 3.82108e-03 8.28454e-03

Table 6: Order verification study indicating first order convergence in the y-component
of the B field in the L1, L2 and L

∞
norms for the Quasi-Steady State Method (qsm)

for the Perry-Jones-White rotating cylinder problem. This is the table form of the QSM
data shown in Figure 4.
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